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ABSTRACT 
 

Deep Generative Models (DGMs) have shown significant promise in drug discovery by 

enabling efficient exploration of the vast chemical space. Traditional drug design approaches 

face limitations due to the complexity and size of this space. In this study, we propose a multi- 

objective optimization approach using a transformer-based architecture to generate drug-like 

molecules with desired properties, such as quantitative drug-likeness (QED), logarithm of 

partition coefficient (LogP), and synthetic accessibility score (SAS). We employ reinforcement 

learning (RL) with Proximal Policy Optimization (PPO) and Genetic Algorithm to improve 

performance. Our results demonstrate the model’s ability to produce drug-like molecules with 

the desired properties, showcasing its potential to accelerate the drug discovery process. 
 

BACKGROUND AND PURPOSE OF RESEARCH 
 

The process of drug discovery has been a major challenge and has not only increased in 

duration, taking generally 12-15 years, but also in risk and cost. [1] Despite advancements in 

various aspects of the drug development and discovery process, the success rate remains low, 

at only 10%–15%. [2] 
 

In recent years, efforts have been made to apply deep learning, especially generative models, 

to the drug design field. Nevertheless, generating valid and desired molecular structures 

remains a difficult task, primarily due to the vast chemical space and the limited availability of 

labelled data. Methods like those by Gomez et al. still struggled to achieve high success rates 

because of the complex grammatical rules of SMILES (Simplified molecular- input line-entry 

system) strings. [3] 
 

Despite these challenges, advancements in the field of machine learning have made deep 

generative models (DGMs) a promising solution to improve efficiency in the discovery 

process. They have the potential to save time and cost of at least 25 to 50% in the discovery 

and pre-clinical stages. [2,4] Furthermore, DGMs can utilize cheminformatics tools to 

eliminate invalid molecules, thereby focusing efforts on high-potential compounds. This 

capability streamlines early drug discovery and enables more effective use of resources. 
 

Recently, there has also been increasing focus on reinforcement learning approaches. 

Nevertheless, these methods have their limitations, in scalability, data efficiency, and 

robustness. [6,7] The typical Q-learning algorithm applies only to discrete action and state 



space, leading to inefficient learning. On the other hand, recently developed, PPO demonstrates 

relatively high potential in overcoming these challenges. It has the stability and reliability of 

trust-region methods and is simpler to implement. [6] 
 

Additionally, while machine learning methods present impressive results, traditional 

approaches like GAs remain effective for constrained optimization. GAs, which mimic natural 

selection and mutation, can outperform ML techniques in constrained tasks [8,9]. 
 

HYPOTHESIS 
 

In this paper, we propose a multi-objective optimization approach that combines a transformer- 

based architecture with reinforcement learning, followed by constrained optimization. The 

model is designed to optimize QED, LogP, and SAS values, thereby generating molecules with 

favourable chemical properties. Using SMILES string representations, the transformer learns 

the underlying chemical rules that define valid molecules. Reinforcement learning, specifically 

PPO, is then applied to refine the generation process, ensuring that the molecules align better 

with the desired property objectives. We also experimented with using GA to refine the outputs 

by maintaining the desired properties while exploring different molecular modifications via 

mutations and crossovers. 
 

METHODOLOGY AND RESULTS 
 

Pre-Training with Transformer Model 
 

Our model utilizes a transformer-based architecture, which is commonly used for 

autoregressive language modelling, to generate SMILES strings with desired molecular 

properties, such as QED, SAS and LogP. The properties are encoded into a 3D vector via linear 

transformation with each dimension representing one of the properties, and is used as the input 

of the model. The core of the model consists of 6 stacked transformer encoder-decoder blocks. 

Each block is composed of a multi-head self-attention mechanism and a feed-forward network. 

The final output is then passed through a linear layer to project it into the vocabulary space. 

This generates a distribution over possible tokens, from which the next token is sampled. 
 

To train the model, we used a subset of the Zinc dataset that consists of 250k molecules. During 

training, the model receives the molecule properties as condition vectors as the input and the 

SMILES strings as target output. The model uses teacher forcing where the target SMILES is 

initially masked, and the model is required to predict the next token in the SMILES. The next 

token of the actual SMILES will then be revealed, and the model will have to predict the next 

token again. This repeats until the full SMILES is generated. Generation is done in an 

autoregressive manner, one token at a time, conditioning each new token on the previously 

generated token and condition vectors. Top-p sampling is used, where tokens are selected based 

on their cumulative probability: 

 

∑ 𝑃(𝑥𝑖|𝑥1:𝑖−1, 𝑐) ≥ 𝑝 

𝑥∈𝑇𝑝 

(1) 

 

where 𝑃(𝑥𝑖|𝑥1:𝑖−1, 𝑐) is the probability of token 𝑥𝑖 conditioned on the sequence generated so far 

𝑥1:𝑖−1 and the condition vector 𝑐. 𝑇𝑝 is the subset of tokens from vocabulary where the 

cumulative probability exceeds 𝑝, which we have set to be 0.9. 



We compared our transformer model with an LSTM model, which is also a highly effective 

model for handling sequential data. We utilized the following metrics to evaluate the 

effectiveness of the models: 
 

1. Validity: the percentage of valid molecules the model is able to generate, which is 

evaluated by RDKit 

2. Diversity: the percentage of unique molecules that the model can generate 

3. Novelty*: the percentage of molecules generated that are not in the training dataset 

4. 𝑟𝑚𝑠𝑒𝑄𝐸𝐷*: the root mean squared error (RMSE) of QED values (quantifying the drug- 

likeness of molecules based on eight common molecular properties: molecular weight, 

AlogP, hydrogen bond donors, hydrogen bond acceptors, polar surface area, rotatable 

bonds, aromatic rings, and structural alerts) of the generated molecules relative to the target 

QED 

5. 𝑟𝑚𝑠𝑒𝑆𝐴𝑆*: the RMSE of SAS values (an estimation of molecular synthesis feasibility based 

on fragment scores and complexity) of the generated molecules relative to the target SAS. 

6. 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃*: the RMSE of LogP values (logarithm of the partition coefficient, measuring 

hydrophobicity) of the generated molecules relative to the target LogP. 

*Novelty, 𝑟𝑚𝑠𝑒𝑄𝐸𝐷, 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 and 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 metrics were calculated with the exclusion of 

invalid molecules. 

We randomly sampled specific property value combinations from the dataset to ensure that the 

values represent plausible and meaningful targets and generated 1000 molecules to evaluate. 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

LSTM 96.5% 97.8% 99.8% 0.133 0.205 0.541 

Transformer 99.6% 81.8% 99.6% 0.070 0.146 0.289 

Table 1.1. Comparison of results for main metrics between LSTM and transformer, for target 

QED: 0.7, SAS: 2.0 and LogP: 5.0 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

LSTM 97.3% 92.4% 100.0% 0.141 0.524 1.339 

Transformer 97.8% 85.1% 99.9% 0.079 0.383 0.708 

Table 1.2. Comparison of results for main metrics between LSTM and transformer, for target 

QED: 0.55, SAS: 5.0 and LogP: -1.6 
 

The results from Tables 1.1 – 1.3 highlight that both models are capable of generating 

molecules of high validity and novelty. Additionally, while the LSTM model performs better 

in generating unique molecules, the RMSE scores for the transformer was lower. 



Due to the low diversity, we decided to incorporate Byte Pair Encoding(BPE). Instead of 

tokenising at the character level, BPE identifies and encodes common structures in the dataset 

as tokens. Each token would then represent a more meaningful group of atoms and bonds, 

allowing for enhanced exploration of the chemical space and thereby generating more unique 

molecules. 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Single Char 99.6% 81.8% 99.6% 0.070 0.146 0.289 

BPE 97.9% 98.4% 99.1% 0.160 0.139 0.453 

Table 2.1. Comparison of results for main metrics for different tokenizer approaches, for target 

QED: 0.7, SAS: 2.0 and LogP: 5.0 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Single Char 97.8% 85.1% 99.9% 0.079 0.383 0.708 

BPE 93.7% 91.9% 99.5% 0.109 0.346 0.737 

Table 2.2. Comparison of results for main metrics for different tokenizer approaches, for target 

QED: 0.55, SAS: 5.0 and LogP: -1.6 
 

The metrics presented in Tables 2.1 to 2.2 demonstrate that the implementation of BPE 

improves diversity, as well as 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 score slightly. 

Reinforcement Learning 
 

After training the base model, we implemented PPO to fine-tune the model to be able to 

generate molecules with properties closer to the specified targets and achieve lower RMSE 

scores. 
 

For each episode, we use the pre-trained model to generate SMILES strings and for each 

generated molecule, the reward function evaluates how closely its properties match the targets, 

with the properties assigned different weights: 

𝑟𝑒𝑤𝑎𝑟𝑑𝑡  = 0.45 ∙ 𝑟𝑒𝑤𝑎𝑟𝑑𝑄𝐸𝐷 + 0.15 ∙ 𝑟𝑒𝑤𝑎𝑟𝑑𝑆𝐴𝑆 + 0.40 ∙ 𝑟𝑒𝑤𝑎𝑟𝑑𝐿𝑜𝑔𝑃 (2) 
 

where, 

𝑟𝑒𝑤𝑎𝑟𝑑𝑄𝐸𝐷 = 1 − |𝑄𝐸𝐷𝑔𝑒𝑛 − 𝑄𝐸𝐷𝑡𝑎𝑟𝑔𝑒𝑡| 

𝑟𝑒𝑤𝑎𝑟𝑑𝑆𝐴𝑆 = 1 − |𝑆𝐴𝑆𝑔𝑒𝑛 − 𝑆𝐴𝑆𝑡𝑎𝑟𝑔𝑒𝑡| 

𝑟𝑒𝑤𝑎𝑟𝑑𝐿𝑜𝑔𝑃 = 1 − |𝐿𝑜𝑔𝑃𝑔𝑒𝑛 − 𝐿𝑜𝑔𝑃𝑡𝑎𝑟𝑔𝑒𝑡| 

The rewards are used in the calculation of return 𝑅𝑡 is calculated for each episode and is then 

used to calculate advantage 𝐴𝑡. The PPO updates the policy 𝜋𝜃(𝑎|𝑠) , parameterized by 𝜃, using 
the clipped surrogate objective: 



 

 
where, 

𝐿 𝐶𝐿𝐼𝑃(𝜃) = 𝐸̅𝑡  [min(𝑟𝑡(𝜃) ∙ 𝐴𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) ∙ 𝐴𝑡] (4) 

𝐸̅𝑡  denotes the expectation over timesteps 
𝜖 represents the clipping range that is set to 0.2 

𝑟 (𝜃) = 
𝜋𝜃(𝑎𝑡|𝑠𝑡) denotes the probability ratio comparing the new policy to the old policy, 

𝑡 𝜋𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) 

where 𝑎𝑡 denotes the action taken at time 𝑡 and 𝑠𝑡 denotes the state at time 𝑡 

In equation 7, the clipped term ensures that the policy update remains within the bound of 𝜖 , 
and the prevents excessively large policy updates, improving training stability. 

 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Pre-PPO 97.9% 98.4% 99.1% 0.160 0.139 0.453 

Post-PPO 97.6% 99.1% 99.5% 0.161 0.136 0.403 

Table 3.1. Comparison of results for main metrics before and after RL, for target QED: 0.7, 

SAS: 2.0 and LogP: 5.0 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Pre-PPO 93.7% 91.9% 99.5% 0.109 0.346 0.737 

Post-PPO 91.7% 90.4% 99.5% 0.080 0.308 0.740 

Table 3.2. Comparison of results for main metrics before and after RL, for target QED: 0.55, 

SAS: 5.0 and LogP: -1.6 
 

The results in Tables 3.1 – 3.2 show that RL can enhance the performance of the model, with 

slight improvements in most of the metric scores. 
 

Genetic Algorithm 
 

We applied GA after generating molecules. A combination of mutations, fragmentation and 

crossover was applied on the generated molecules, such that there is a balance between 

conservative edits and disruptive edits. The mutations include the following: 
 

1. Add atom: a random atom is appended and bonded with an existing atom in the molecule 

2. Insert atom: inserts a new atom between two randomly chosen atoms 

3. Change atom: replaces an existing atom with a different atom 

4. Remove atom: a terminal atom (bonded to only one other atom within a molecule) is 

removed 

5. Modify bond: changes the bond type between two randomly selected atoms (eg. single 

bond to double bond) 



6. Add ring: adds a new ring structure and bonds the new ring with a random existing atom 

in the molecule 

7. Delete cyclic bond: removes a randomly selected bond that is part of a ring in the molecule 

To implement crossovers, fragmentation was first implemented: 

1. Ring Fragmentation cuts all rings bonds, producing the ring fragments 

2. Non-Ring Fragmentation: Cuts all non-ring bonds, producing acyclic fragments 
 

Then, the fragments are combines from two parent molecules to create new offsprings, where 

ring-based and non-ring based crossovers are randomly implemented. Each molecules 

undergoes 100 iterations of mutation and 30 iterations of crossover, and the properties are 

calculated for each new molecule, and only those that are closer to the targets are retained. 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Pre-GA 97.6% 99.1% 99.5% 0.161 0.136 0.403 

Post-GA 100.0% 99.6% 100.0% 0.135 0.070 0.257 

Table 4.1. Comparison of results for main metrics before and after constrained optimization, 

for target QED: 0.7, SAS: 2.0 and LogP: 5.0 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Pre-GA 91.7% 90.4% 99.5% 0.080 0.308 0.740 

Post-GA 100.0% 99.8% 100.0% 0.066 0.192 0.397 

Table 4.2. Comparison of results for main metrics before and after constrained optimization, 

for target QED: 0.55, SAS: 5.0 and LogP: -1.6 
 

From Table 4.1, we can observe how GA can reduce the RMSE scores for the 3 properties. 

Therefore, GA is a suitable method in ensuring that the molecules generated are optimized for 

the 3 target properties. 
 

 

 
 

 

 

 

 

 



Fig 1.1. Distribution of QED Fig 1.2. Distribution of SAS Fig 1.3. Distribution of LogP 
 

Fig 1.1 to 1.3 show the final outputs, with the graphs showing that the values of the properties 

are closely centred around the specified targets, especially for the SAS. 
 

 

 
Target: 

 

QED: 0.9, SAS: 1.5, LogP: 3 

Target: 
 

QED: 0.7, SAS: 2, LogP: 5 

Target: 
 

QED: 0.55, SAS: 5, LogP: -1.6 

 

 

 

 

 

 

QED: 0.905, SAS: 1.495, 
LogP: 2.997 

QED: 0.698, SAS: 1.992, 
LogP: 5.010 

QED: 0.548, SAS: 5.027, 
LogP: -1.599 

 

Fig 2. shows the top molecule generated for each target after GA. 
 

CONCLUSION AND DISCUSSION 
 

In this project, we addressed the challenge of de novo drug design by generating novel drug- 

like molecules that meet specific molecular properties, such as QED, SAS and LogP. We 

introduce a hybrid approach that combines a transformer-based generative model and GA. This 

hybrid approach allows for a balance between producing valid molecules and ensuring 

diversity. We also demonstrated how RL and BPE can be effective for improving the results 

for the autoregressive generation task. 
 

Unlike methods that optimize for a single property, our approach evaluates multiple properties 

simultaneously, allowing for generation of more balanced and practically relevant molecules. 

However, QED account for any biological interaction or pathway that the drug may utilise and 

future work could explore incorporation of additional biological properties such as modelling 

the interactions between receptors and potential drug molecules to improve the practical 

relevance of the generated molecules. 
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APPENDIX 
 

A. Results 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

LSTM 99.9% 54.9% 99.3% 0.092 0.159 0.407 

Transformer 100.0% 22.6% 99.0% 0.034 0.100 0.334 

Table 1.3. Comparison of results for main metrics between LSTM and transformer, for target 

QED: 0.9, SAS: 1.5 and LogP: 3.0 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Single Char 100.0% 22.6% 99.0% 0.034 0.100 0.334 

BPE 99.9% 74.4% 98.8% 0.041 0.083 0.316 

Table 2.3. Comparison of results for main metrics for different tokenizer approaches, for target 

QED: 0.9, SAS: 1.5 and LogP: 3.0 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Pre-PPO 99.9% 74.4% 98.8% 0.041 0.083 0.316 

Post-PPO 99.9% 93.5% 98.5% 0.110 0.113 0.351 

Table 3.3. Comparison of results for main metrics before and after RL, for target QED: 0.9, 

SAS: 1.5 and LogP: 3.0 
 

 
Validity Diversity Novelty 𝑟𝑚𝑠𝑒𝑄𝐸𝐷 𝑟𝑚𝑠𝑒𝑆𝐴𝑆 𝑟𝑚𝑠𝑒𝐿𝑜𝑔𝑃 

Pre-GA 99.9% 93.5% 98.5% 0.110 0.113 0.351 

Post-GA 100.0% 97.5% 100.0% 0.090 0.091 0.206 

Table 4.3. Comparison of results for main metrics before and after constrained optimization, 

for target QED: 0.9, SAS: 1.5 and LogP: 3.0 


